intellectual vanities… about close to everything

Nondirective Meditation Yields Deep Change In Brain Activity

leave a comment »

Forget about crystals and candles, and about sitting and breathing in awkward ways. Meditation research explores how the brain works when we refrain from concentration, rumination and intentional thinking. Electrical brain waves suggest that mental activity during meditation is wakeful and relaxed.

“Given the popularity and effectiveness of meditation as a means of alleviating stress and maintaining good health, there is a pressing need for a rigorous investigation of how it affects brain function,” says Professor Jim Lagopoulos of Sydney University, Australia. Lagopoulos is the principal investigator of a joint study between his university and researchers from the Norwegian University of Science and Technology (NTNU) on changes in electrical brain activity during nondirective meditation.

Constant brain waves

Whether we are mentally active, resting or asleep, the brain always has some level of electrical activity. The study monitored the frequency and location of electrical brain waves through the use of EEG (electroencephalography). EEG electrodes were placed in standard locations of the scalp using a custom-made hat

Participants were experienced practitioners of Acem Meditation, a nondirective method developed in Norway. They were asked to rest, eyes closed, for 20 minutes, and to meditate for another 20 minutes, in random order. The abundance and location of slow to fast electrical brain waves (delta, theta, alpha, beta) provide a good indication of brain activity.

Relaxed attention with theta

During meditation, theta waves were most abundant in the frontal and middle parts of the brain.

“These types of waves likely originate from a relaxed attention that monitors our inner experiences. Here lies a significant difference between meditation and relaxing without any specific technique,” emphasizes Lagopoulos.

“Previous studies have shown that theta waves indicate deep relaxation and occur more frequently in highly experienced meditation practitioners. The source is probably frontal parts of the brain, which are associated with monitoring of other mental processes.”

“When we measure mental calm, these regions signal to lower parts of the brain, inducing the physical relaxation response that occurs during meditation.”

Silent experiences with alpha

Alpha waves were more abundant in the posterior parts of the brain during meditation than during simple relaxation. They are characteristic of wakeful rest.

“This wave type has been used as a universal sign of relaxation during meditation and other types of rest,” comments Professor Øyvind Ellingsen from NTNU. “The amount of alpha waves increases when the brain relaxes from intentional, goal-oriented tasks.This is a sign of deep relaxation, — but it does not mean that the mind is void.”

Neuroimaging studies by Malia F. Mason and co-workers at Dartmouth College NH suggest that the normal resting state of the brain is a silent current of thoughts, images and memories that is not induced by sensory input or intentional reasoning, but emerges spontaneously “from within.”

“Spontaneous wandering of the mind is something you become more aware of and familiar with when you meditate,” continues Ellingsen, who is an experienced practitioner. “This default activity of the brain is often underestimated. It probably represents a kind of mental processing that connects various experiences and emotional residues, puts them into perspective and lays them to rest.”

Different from sleep

Delta waves are characteristic of sleep. There was little delta during the relaxing and meditative tasks, confirming that nondirective meditation is different from sleep.

Beta waves occur when the brain is working on goal-oriented tasks, such as planning a date or reflecting actively over a particular issue. EEG showed few beta waves during meditation and resting.

“These findings indicate that you step away from problem solving both when relaxing and during meditation,” says Ellingsen.

Nondirective versus concentration

Several studies indicate better relaxation and stress management by meditation techniques where you refrain from trying to control the content of the mind.

“These methods are often described as nondirective, because practitioners do not actively pursue a particular experience or state of mind. They cultivate the ability to tolerate the spontaneous wandering of the mind without getting too much involved. Instead of concentrating on getting away from stressful thought and emotions, you simple let them pass in an effortless way.”

Take home message

Nondirective meditation yields more marked changes in electrical brain wave activity associated with wakeful, relaxed attention, than just resting without any specific mental technique.

he Journal of Alternative and Complementary Medicine. November 2009, 15(11): 1187-1192. doi:10.1089/acm.2009.0113.
Increased Theta and Alpha EEG Activity During Nondirective Meditation.
Jim Lagopoulos, Jian Xu, Inge Rasmussen, Alexandra Vik, Gin S. Malhi, Carl F. Eliassen, Ingrid E. Arntsen, Jardar G. Sæther, Stig Hollup, Are Holen, Svend Davanger, Øyvind Ellingsen

Abstract Objectives: In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and maintaining good health. Despite its popularity, little is known about the neural mechanisms by which meditation works, and there is a need for more rigorous investigations of the underlying neurobiology. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during meditation inspired by techniques that focus on concentration, and in comparison much less has been reported on mindfulness and nondirective techniques that are proving to be just as popular. Design: The present study examined EEG changes during nondirective meditation. The investigational paradigm involved 20 minutes of acem meditation, where the subjects were asked to close their eyes and adopt their normal meditation technique, as well as a separate 20-minute quiet rest condition where the subjects were asked to close their eyes and sit quietly in a state of rest. Both conditions were completed in the same experimental session with a 15-minute break in between. Results: Significantly increased theta power was found for the meditation condition when averaged across all brain regions. On closer examination, it was found that theta was significantly greater in the frontal and temporal–central regions as compared to the posterior region. There was also a significant increase in alpha power in the meditation condition compared to the rest condition, when averaged across all brain regions, and it was found that alpha was significantly greater in the posterior region as compared to the frontal region. Conclusions: These findings from this study suggest that nondirective meditation techniques alter theta and alpha EEG patterns significantly more than regular relaxation, in a manner that is perhaps similar to methods based on mindfulness or concentration.

Written by huehueteotl

March 20, 2010 at 6:14 pm

Posted in Neuroscience

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: