intellectual vanities… about close to everything

Talk Changes How Speech Is Heard: Linking Sensory And Motor Systems

leave a comment »

Learning to talk also changes the way speech sounds are heard, according to a new study published in Proceedings of the National Academy of Sciences by scientists at Haskins Laboratories, a Yale-affiliated research laboratory. The findings could have a major impact on improving speech disorders.

Cornelisz Anthonisz. (Theunissen), Der Einsturz des Turmes zu Babel, 1547

“We’ve found that learning is a two-way street; motor function affects sensory processing and vice-versa,” said David J. Ostry, a senior scientist at Haskins Laboratories and professor of psychology at McGill University. “Our results suggest that learning to talk makes it easier to understand the speech of others.”

As a child learns to talk, or an adult learns a new language, Ostry explained, a growing mastery of oral fluency is matched by an increase in the ability to distinguish different speech sounds. While these abilities may develop in isolation, it is possible that learning to talk also changes the way we hear speech sounds.

Ostry and co-author Sazzad M. Nasir tested the notion that speech motor learning alters auditory perceptual processing by evaluating how speakers hear speech sounds following motor learning. They simulated speech learning by using a robotic device, which introduced a subtle change in the movement path of the jaw during speech.

To assess speech perception, the participants listened to words one at a time that were taken from a computer-produced continuum between the words “had” and “head.” In the speech learning phase of the study, the robot caused the jaw to move in a slightly unusual fashion. The learning is measured by assessing the extent to which participants correct for the unusual movement.

“Its like being handed a two-pound weight for the first time and being asked to make a movement, it’s uncomfortable at first, but after a while, the movement becomes natural,” said Ostry. “In growing children, the nervous system has to adjust to moving vocal tract structures that are changing in size and weight in order to produce the same words. Participants in our study are learning to return the movement to normal in spite of these changes. Eventually our work could have an impact on deviations to speech caused by disorders such as stroke and Parkinson’s disease.”

“Our study showed that speech motor learning altered the perception of these speech sounds. After motor learning, the participants heard the words differently than those in the control group,” said Ostry. “One of the striking findings is that the more motor learning we observed, the more their speech perceptual function changed.”

Ostry said that future research will focus on the notion that sensory remediation may be a way to jumpstart the motor system.

The team previously found that the movement of facial muscles around the mouth plays an important role not only in the way the sounds of speech are made, but also in the way they are heard.

Haskins Laboratories was founded in 1935 by the late Dr. Caryl P. Haskins. This independent research institute has been in New Haven, Connecticut since 1970 when it formalized affiliations with Yale University and the University of Connecticut. The Laboratories’ primary research focus is on the science of the spoken and written word.

PNAS published online before print November 2, 2009, doi:10.1073/pnas.0907032106
Auditory plasticity and speech motor learning
* Sazzad M. Nasir
* and David J. Ostry

Abstract Is plasticity in sensory and motor systems linked? Here, in the context of speech motor learning and perception, we test the idea sensory function is modified by motor learning and, in particular, that speech motor learning affects a speaker’s auditory map. We assessed speech motor learning by using a robotic device that displaced the jaw and selectively altered somatosensory feedback during speech. We found that with practice speakers progressively corrected for the mechanical perturbation and after motor learning they also showed systematic changes in their perceptual classification of speech sounds. The perceptual shift was tied to motor learning. Individuals that displayed greater amounts of learning also showed greater perceptual change. Perceptual change was not observed in control subjects that produced the same movements, but in the absence of a force field, nor in subjects that experienced the force field but failed to adapt to the mechanical load. The perceptual effects observed here indicate the involvement of the somatosensory system in the neural processing of speech sounds and suggest that speech motor learning results in changes to auditory perceptual function.

Written by huehueteotl

November 5, 2009 at 8:39 am

Posted in Neuroscience

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: