intellectual vanities… about close to everything

Touch-based Illusion: Mind Trick Yields New Insights On Perception

with one comment

Anyone who has seen an optical illusion can recall the quirky moment when you realize that the image being perceived is different from objective reality. Now, a team of scientists from MIT, Harvard and McGill has designed a new illusion involving the sense of touch, which is helping to glean new insights into perception and how different senses–such as touch and sight–work together.


Anyone who has seen an optical illusion can recall the quirky moment when you realize that the image being perceived is different from objective reality. Now, a team of scientists from MIT, Harvard and McGill has designed a new illusion involving the sense of touch, which is helping to glean new insights into perception and how different senses–such as touch and sight–work together. (Credit: iStockphoto/Allister Clark)

Ambiguous visual images are fascinating because it is often difficult to imagine seeing them any other way–until something flips within the brain and the alternative perception is revealed. This phenomenon, known as perceptual rivalry, is of great interest to neuroscience. Because rivalrous illusions produce changes in perception that are independent of changes in the stimulus itself, they may help to understand how the brain gives rise to conscious experience.

“The most familiar illusions involve vision,” explains Christopher Moore, a principal investigator at the McGovern Institute for Brain Research at MIT and an assistant professor in MIT’s Department of Brain and Cognitive Sciences. “But we’re interested in discovering general principles of perception, and we wanted to see whether similar illusions can occur in the tactile domain.”

Moore is senior author of a paper on the new illusion published on the Current Biology web site on July 17.

In the visual illusion known as the apparent motion quartet, two dots are presented at diagonally opposite corners of an imaginary square. When the pattern alternates between the two diagonals–top left/bottom right followed by top right/bottom left–people perceive the dots as moving back and forth either horizontally or vertically. After a period of time, typically a minute or two, most observers report that the axis of motion appears to flip from vertical to horizontal or vice versa.

An example of the illusion can be seen at http://web.mit.edu/~tkonkle/www/AmbiguousQuartet.html.

To create a tactile version of this illusion, Olivia Carter, a postdoctoral researcher at Harvard University, and Talia Konkle, a graduate student in Moore’s MIT lab, used a new piezoelectric stimulator device developed by Qi Wang and Vincent Hayward at McGill University. This device, originally designed as a computer Braille display, uses a centimeter-square array composed of 60 “tactors” to deliver precisely controlled touch stimuli to the finger tips of volunteer subjects.

When volunteer subjects were given the diagonally alternating stimuli, they perceived them as moving smoothly back and forth–and just as with the visual illusion, the direction of apparent motion flipped back and forth from vertical to horizontal, on average about twice per minute, even though there was no change in the stimulus itself.

The authors went on to show that after a period of adaptation to an unambiguous horizontal or vertical stimulation (produced by activating a row of tactors in succession), subjects were more likely to perceive a subsequent ambiguous stimulus as being in the orthogonal direction. Similar after-effects are common in vision and were once thought to reflect fatigue in the brain circuits responsible for a particular perceptual interpretation, but are now thought to reflect a continual recalibration of the brain to its sensory environment. In another experiment, an ambiguous touch stimulus was interrupted by a three-second break, after which subjects tended to experience the same direction as before the break, suggesting that the prior interpretation was somehow retained in memory and used to reinterpret the ambiguous stimulus.

Real-world objects often stimulate multiple senses simultaneously, and our brains must combine these disparate stimuli into a unified interpretation of the world. The authors used their tactile illusion to explore the interaction between touch and vision. They instructed their subjects to make vertical or horizontal eye movements during the ambiguous touch stimuli. Subjects perceived that the direction of tactile motion shifted into alignment with the direction of the eye movements, but only if the head and finger were also aligned. Tilting the head sideways 90 degrees produced a shift to the other direction–suggesting that the tactile and visuomotor systems are somehow aligned with respect to the external world.

“We don’t yet understand what’s happening in the brain during these illusions,” says Konkle. “But we think this illusion will be a useful new tool to understand more about the similarities between different sensory modalities and how they all work together.”

Curr Biol. 2008 Jul 15. [Epub ahead of print]
Tactile Rivalry Demonstrated with an Ambiguous Apparent-Motion Quartet.
Carter O, Konkle T, Wang Q, Hayward V, Moore C.

When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception

Written by huehueteotl

July 22, 2008 at 7:37 am

Posted in Neuroscience

One Response

Subscribe to comments with RSS.

  1. Admiring the time and energy you put into your site and in depth information you offer.
    It’s nice to come across a blog every once in a while that isn’t the same old rehashed information.
    Fantastic read! I’ve bookmarked your site and I’m including your RSS feeds to
    my Google account.

    Josefina

    August 7, 2013 at 9:42 pm


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: