intellectual vanities… about close to everything

Neurons In The Frontal Lobe Responsible For Rational Decision-making

with one comment

 You study the menu at a restaurant and decide to order the steak rather than the salmon. But when the waiter tells you about the lobster special, you decide lobster trumps steak. Without reconsidering the salmon, you place your order — all because of a trait called “transitivity.”

“Transitivity is the hallmark of rational economic choice,” says Camillo Padoa-Schioppa, a postdoctoral researcher in HMS Professor of Neurobiology John Assad’s lab. According to transitivity, if you prefer A to B and B to C, then you ought to prefer A to C. Or, if you prefer lobster to steak, and steak to salmon, then you will prefer lobster to salmon.

Here is an example of a Hasse diagram on a partially-ordered set with 5 elements. Observe that the full relation (depicted on the right) is much more tangled than the Hasse diagram. The red edges are those whose existence is implied by transitivity.

Padoa-Schioppa is lead author on a paper that suggests this trait might be encoded at the level of individual neurons. The study shows that some neurons in a part of the brain called the orbitofrontal cortex encode economic value in a “menu invariant” way. That is, the neurons respond the same to steak regardless if it’s offered against salmon or lobster.

“People make choices by assigning values to different options. If the values are menu invariant preferences will be transitive. The activity of these neurons does not vary with the menu options, suggesting that these neurons could be responsible for transitivity,” Padoa-Schioppa explains.

“This study provides a key insight into the biology of our frontal lobes and the neural circuits that underlie decision-making,” Assad adds. “Despite the maxim, we in fact can compare apples to oranges, and we do it all the time. Camillo’s research sheds light on how we make these types of choices.”

Frontal lobe damage has been linked to “choice deficits” such as eating disorders, compulsive gambling and abnormal social behavior. For example, in the first documented case of brain injury impacting behavior, the infamous railroad construction foreman Phineas Gage became unsociable after a tamping iron passed through his skull in 1848, damaging his frontal lobes. This area of the brain has also been implicated in drug abuse.

Labs are just beginning to probe normal decision-making at the level of individual neurons, venturing into a new field called neuroeconomics. Such research might eventually help to explain choice deficits associated with frontal lobe functions.

The new study builds on an April 2006 Nature paper in which Padoa-Schioppa and Assad identified neurons that encode the value macaque monkeys assign to juice they choose independent of its type, providing a common currency of comparison for the brain. (see bottom of this entry for details)

In that study, the scientists found that although monkeys generally prefer grape juice to apple juice, sometimes they choose the latter, if it is offered in large amounts. When presented with 3 units of apple juice and 1 unit of grape juice, for example, a monkey might take the grape juice only 50 percent of the time. This indicates that the value of the grape juice is 3 times that of the apple juice. A particular group of neurons in the orbitofrontal cortex fire at roughly the same rate, regardless of the monkey’s decision because the animal values both choices equally. These neurons also fire at the same rate if the monkey chooses 6 units of apple juice or 2 units of grape juice. Thus, these neurons encode the value the monkey receives in each trial.

Now, by adding a third juice to the mix, the team has tested whether these neurons reflect transitivity. The three juices were offered to a monkey in pairs dozens of times over the course of a session, the quantity of each juice varying from trial to trial.

In general, monkeys preferred 1 unit of juice A to 1 unit of juice B, 1B to 1C, and 1A to 1C. During each session, Padoa-Schioppa recorded the activity of a handful of neurons in the orbitofrontal cortex, and he discovered their firing rate did not depend on whether B was offered against A or against C, indicating that these neurons respond in a menu invariant way.

“The stability of these neurons could help to explain why we make decisions that are consistent over the short term,” Padoa-Schioppa says. “In our study, the neural circuit was not influenced by the short-term behavioral context.”

Padoa-Schioppa is now examining the possibility that value-encoding neurons may adapt to different value scales over longer periods of time.

 

Nature Neuroscience
Published online: 9 December 2007 | doi:10.1038/nn2020

The representation of economic value in the orbitofrontal cortex is invariant for changes of menu

Camillo Padoa-Schioppa1 & John A Assad1

Economic choice entails assigning values to the available options and is impaired by lesions to the orbitofrontal cortex (OFC). Recent results show that some neurons in the OFC encode the values that monkeys (Macaca mulatta) assign to different goods when they choose between them. A broad and fundamental question is how this neuronal representation of value depends on the behavioral context. Here we show that neuronal responses in the OFC are typically invariant for changes of menu. In other words, the activity of a neuron in response to one particular good usually does not depend on what other goods are available at the same time. Neurons in the OFC encode economic value, not relative preference. The fact that their responses are menu invariant suggests that transitivity, a fundamental trait of economic choice, may be rooted in the activity of individual neurons.

  1. Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.

see also:

Letter

Nature 441, 223-226(11 May 2006) | doi:10.1038/nature04676; Received 28 November 2005; Accepted 24 February 2006; Published online 23 April 2006

Neurons in the orbitofrontal cortex encode economic value
Camillo Padoa-Schioppa and John A. Assad

Economic choice is the behaviour observed when individuals select one among many available options. There is no intrinsically ‘correct’ answer: economic choice depends on subjective preferences. This behaviour is traditionally the object of economic analysis and is also of primary interest in psychology. However, the underlying mental processes and neuronal mechanisms are not well understood. Theories of human and animal choice have a cornerstone in the concept of ‘value’. Consider, for example, a monkey offered one raisin versus one piece of apple: behavioural evidence suggests that the animal chooses by assigning values to the two options4. But where and how values are represented in the brain is unclear. Here we show that, during economic choice, neurons in the orbitofrontal cortex (OFC) encode the value of offered and chosen goods. Notably, OFC neurons encode value independently of visuospatial factors and motor responses. If a monkey chooses between A and B, neurons in the OFC encode the value of the two goods independently of whether A is presented on the right and B on the left, or vice versa. This trait distinguishes the OFC from other brain areas in which value modulates activity related to sensory or motor processes. Our results have broad implications for possible psychological models, suggesting that economic choice is essentially choice between goods rather than choice between actions. In this framework, neurons in the OFC seem to be a good candidate network for value assignment underlying economic choice.

Written by huehueteotl

December 11, 2007 at 12:30 pm

One Response

Subscribe to comments with RSS.

  1. hi, i learnt a new term ‘transitivity’. but did not understand much. just that neurons in the frontal lobe are responsible for decision making and they guide us thro our values.

    i have also read that brain indulges in heuristics and that it decides with the most vivid images or information stored there. brain does not get into details but takes short cuts. hence many a times our impulsive decisions put us into problems inspite of us having better info stored in thre!

    best wishes.

    latha vidyaranya

    December 11, 2007 at 12:44 pm


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: