intellectual vanities… about close to everything

3-D Brain Centers Pinpointed

leave a comment »

In studies with monkeys, researchers have identified in detail the brain regions responsible for the unique ability of primates, including humans, to process visual 3D shapes to guide their sophisticated manipulation of objects.

Specifically, the researchers delineated regions of the parietal cortex responsible for extracting 3D information by integrating disparities in information from the two eyes. Such integration is critical to perceiving three dimensions, because each eye receives only a two-dimensional projection of an image on the retina.

Led by Guy Orban of Katholieke Universiteit Leuven, the researchers published their findings in the August 2, 2007, issue of the journal Neuron, published by Cell Press.

The researchers performed experiments in which they required monkeys to fixate on computer images of objects projected on a screen. As the animals watched the objects, the researchers scanned their brains using magnetic resonance imaging. This widely used technique involves using harmless magnetic fields and radio waves to measure blood flow in brain regions, which reveals brain activity in those regions.

In one set of experiments, the researchers presented images of connected lines, like partially unfolded paper clips, that could be perceived as three-dimensional structures. The researchers studied the influence of motion on 3D perception by presenting the connected-line images only to one eye and “moving” the objects.

The researchers’ analysis of activity in regions of the parietal cortex during these experiment revealed that two areas–called the anterior intraparietal cortex and the lateral intraparietal cortex–were specifically sensitive only to depth structure.

In a second experiment, the researchers presented to the monkeys computer images that simulated small, complex objects. Perception of the three-dimensionality of small objects is central to primates’ ability to grasp and manipulate with their hands. The researchers’ analysis of the animals’ brain activity revealed that the same intraparietal regions are also uniquely sensitive to the depth structure and two-dimensional shape of such objects.

“This study goes beyond previous imaging studies by demonstrating not only that different parietal areas process distinct aspects of visual 3D space in line with their involvement in distinct sensorimotor functions, but also that 3D shape features are specifically represented in anterior intraparietal regions, where such information is required for the efficient control of hand manipulation tasks,” concluded the researchers.

The researchers include John-Baptiste Durand, Koen Nelissen, Olivier Joly, Claire Wardak, Peter Janssen, and Guy A. Orban of K.U. Leuven, Medical School in Leuven, Belgium; James T. Todd of Ohio State University in Columbus, OH; J. Farley Norman of Western Kentucky University in Bowling Green, KY; Wim Vanduffel of K.U. Leuven, Medical School in Leuven, Belgium and Athinoula A. Martinos Center for Biomedical Imaging in Charlestown, MA.

The work was supported by grants FWO G151.04, GOA 2005/18, IUAP 5/04, EF/05/014, GSKE, R01 EB000790, EU-projects Insight 2+ and Neurobotics and Fyssen Fundation (J.-B.D). The laboratoire Guerbet (Roissy, France) provided the contrast agent Sinerem.

Neuron. 2007 Aug 2;55(3):493-505.

Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape.

Durand JB, Nelissen K, Joly O, Wardak C, Todd JT, Norman JF, Janssen P, Vanduffel W, Orban GA.

Lab Neuro- en Psychofysiologie, K.U. Leuven, Medical School, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.

The intraparietal cortex is involved in the control of visually guided actions, like reach-to-grasp movements, which require extracting the 3D shape and position of objects from 2D retinal images. Using fMRI in behaving monkeys, we investigated the role of the intraparietal cortex in processing stereoscopic information for recovering the depth structure and the position in depth of objects. We found that while several areas (CIP, LIP, and AIP on the lateral bank; PIP and MIP on the medial bank) are activated by stereoscopic stimuli, AIP and an adjoining portion of LIP are sensitive only to depth structure. Furthermore, only these two regions are sensitive to both the depth structure and the 2D shape of small objects. These results indicate that extracting 3D spatial information from stereo involves several intraparietal areas, among which AIP and anterior LIP are more specifically engaged in extracting the 3D shape of objects.

PMID: 17678860 [PubMed – in process]

Written by huehueteotl

August 7, 2007 at 11:49 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: