intellectual vanities… about close to everything

Learning A Second Language – A Problem Of Modern Phrenology?

with 4 comments

cerebrum.jpg

Think you haven’t got the aptitude to learn a foreign language? New research led by Northwestern University neuroscientists suggests that the problem, quite literally, could be in your head.
“Our study links brain anatomy to the ability to learn a second language in adulthood,” said neuroscientist Patrick Wong, assistant professor of communication sciences and disorders at Northwestern and lead author of a study appearing online July 25 in Cerebral Cortex.

Based on the size of Heschl’s Gyrus (HG), a brain structure that typically accounts for no more than 0.2 percent of entire brain volume, the researchers found they could predict — even before exposing study participants to an invented language — which participants would be more successful in learning 18 words in the “pseudo” language.

Wong and his colleagues measured the size of HG, a finger-shaped structure in both the right and left side of the brain, using a method developed by co-authors Virginia Penhune and Robert Zatorre (Montreal Neurological Institute). Zatorre and Penhune are well known for research on human speech and music processing and the brain.

“We found that the size of left HG, but not right HG, made the difference,” said Northwestern’s Catherine Warrier, a primary author of the article titled “Volume of Left Heschl’s Gyrus and Linguistic Pitch.” Anil K. Roy (Northwestern), Abdulmalek Sadehh (West Virginia University) and Todd Parish (Northwestern) also are co-authors.

The study is the first to consider the predictive value of a specific brain structure on linguistic learning even before training has begun. Specifically, the researchers measured the size of study participants’ right and left Heschl’s Gyrus on MRI brains scans, including calculations of the volume of gray and white matter.

Studies in the past have looked at the connection between brain structure and a participant’s ability to identify individual speech sounds in isolation rather than learning speech sounds in a linguistic context. Others have looked at the connection between existing language proficiency and brain structure.

“While our study demonstrates a link between biology and linguistics, we do not argue that biology is destiny when it comes to learning a second language,” Wong emphasized. Adults with smaller volumes of left HG gray matter need not despair that they can never learn another language.

“We are already testing different learning strategies for participants whom we predict will be less successful to see if altering the training paradigm results in more successful learning,” Wong added.

According to Warrier, Northwestern research professor of communication sciences and disorders, the researchers were surprised to find the HG important in second language learning. “The HG, which contains the primary region of the auditory cortex, is typically associated with handling the basic building blocks of sound — whether the pitch of a sound is going up or down, where sounds come from, and how loud a sound is — and not associated with speech per se,” she said.

The 17 research participants aged 18 to 26 who had their brain scans taken prior to participating in the pseudo second language training were previously participants in two related studies published by Wong and his research team.

The three studies have identified behavioral, neurophysiologic and, with the current study, neuroanatomic factors which, when combined, can better predict second language learning success than can each single factor alone.

In a behavioral study, Wong’s group found that musical training started at an early age contributed to more successful spoken foreign language learning. The study participants with musical experience also were found to be better at identifying pitch patterns before training.

In a neurophysiologic study — again with the same participants — Wong’s team used functional magnetic resonance imaging to observe what parts of brain were activated when participants listened to different pitch tones. They found that the more successful second language learners were those who showed activation in the auditory cortex (where HG resides).

The participants all were native American English speakers with no knowledge of tone languages. In tone languages (spoken by half the world’s population), the meaning of a word can change when delivered in a different pitch tone. In Mandarin, for example, the word “mi” in a level tone means “to squint,” in a rising tone means “to bewilder” and in a falling and then rising tone means “rice.”

For the study reported in “Cerebral Cortex,” Wong’s 17 participants entered a sound booth after having their brains were scanned. There they were trained to learn six one-syllable sounds (pesh, dree, ner, vece, nuck and fute). The sounds were originally produced by a speaker of American English and then re-synthesized at three different pitch tones, resulting in 18 different “pseudo” words.

The participants were repeatedly shown the 18 “pseudo” words and a black and white picture representing each word’s meaning. Pesh, for example, at one pitch meant “glass,” at another pitch meant “pencil,” and at a third meant “table.” Dree, depending upon pitch, meant “arm,” “cow,” or “telephone.”

As a group – and sometimes in fewer than two or three sessions — the nine participants predicted on the basis of left HG size to be “more successful learners” achieved an average of 97 percent accuracy in identifying the pseudo words. The “less successful” participants averaged 63 percent accuracy and sometimes required as many as 18 training sessions to correctly identify the words.

“What’s important is that we are looking at the brain in a new way that may allow us to understand brain functions more comprehensively and that could help us more effectively teach foreign languages and possibly other skills,” said Wong.

 Cereb Cortex. 2007 Jul 25; [Epub ahead of print]

Volume of Left Heschl’s Gyrus and Linguistic Pitch Learning.

Wong PC, Warrier CM, Penhune VB, Roy AK, Sadehh A, Parrish TB, Zatorre RJ.

The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.

Research on the contributions of the human nervous system to language processing and learning has generally been focused on the association regions of the brain without considering the possible contribution of primary and adjacent sensory areas. We report a study examining the relationship between the anatomy of Heschl’s Gyrus (HG), which includes predominately primary auditory areas and is often found to be associated with nonlinguistic pitch processing and language learning. Unlike English, most languages of the world use pitch patterns to signal word meaning. In the present study, native English-speaking adult subjects learned to incorporate foreign pitch patterns in word identification. Subjects who were less successful in learning showed a smaller HG volume on the left (especially gray matter volume), but not on the right, relative to learners who were successful. These results suggest that HG, typically shown to be associated with the processing of acoustic cues in nonspeech processing, is also involved in speech learning. These results also suggest that primary auditory regions may be important for encoding basic acoustic cues during the course of spoken language learning.

PMID: 17652466 [PubMed – as supplied by publisher]

Written by huehueteotl

July 30, 2007 at 10:32 am

4 Responses

Subscribe to comments with RSS.

  1. Wow, this type of research reminds one of Phrenology, and tends to aid in forms of desrimination. I feel that your sample size is very small, and not randomly generated, I would not be satisfied untill many more people are tested, this also appears to have a bias towards those who have an education in music, especialy ear training, I feel this proves little, and there are too many loop holes. Moreover, research which tends to search for those of a higher learning capacity only does harm.

    Aaron Feldsteen

    February 25, 2008 at 1:00 pm

  2. need to study in CNS and PNS .

    Tom

    September 27, 2009 at 1:04 pm

  3. […] stupid or incompetent, but you may now be able to blame the fact that you don’t have a big enough Heschl’s Gyrus! I guess size does indeed matter! Like this:LikeBe the first to like this […]

  4. mildly interesting but bad science. Are the subjects right or left handed? how big is the sample size? etc.

    …in other news measuring peoples heads predict a predilection towards criminality, the same science group also believes that skin pigment may also play a role.

    dick

    June 2, 2012 at 2:40 am


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: